Die Cholesky-Zerlegung (auch Cholesky-Faktorisierung) (nach André-Louis Cholesky, 1875–1918) bezeichnet in der linearen Algebra eine Zerlegung einer symmetrischen positiv definiten Matrix in ein Produkt aus einer unteren Dreiecksmatrix und deren Transponierten. Sie wurde von Cholesky vor 1914 im Zuge der Triangulation Kretas durch den französischen Service géographique de l’armée entwickelt. Das Konzept kann auch allgemeiner für hermitesche Matrizen definiert werden.